Nuclear engineering is the most integrated of the engineering disciplines. The many components of nuclear systems (medical imaging, nuclear fission reactors, ultrasensitive contraband detectors, and fusion reactors) must all be understood as well as how they relate to one another. Nuclear engineers must be experts in their primary field, as well as knowledgeable in other fields such as electronics, thermodynamics, physics, and materials science. The fundamentals of one science are often the same tools used in solving problems in the other disciplines.
An undergraduate degree in nuclear science and engineering develops the fundamentals of nuclear processes—their production, interactions, and radiation measurements. These studies bring the student all the way to the design phase of nuclear-based systems, stressing social, health, and energy and security impacts.
Studies also incorporate computer methods, thermal-fluid engineering, and electronics—critical tools for a nuclear engineering career.
The Bachelor of Science degree in Nuclear Science and Engineering prepares students for careers in the application and engineering of low-energy nuclear physics. This includes design, analysis, and operation of radiation systems and their applications, such as fission reactors and accelerators, and biomedical uses. Students are also prepared for graduate study in a wide range of engineering and physical sciences.
A five-year program offers an opportunity to earn a Bachelor of Science and a Master of Science in Nuclear Science and Engineering simultaneously.
Read More: solution architecture framework
No comments:
Post a Comment