Sunday, January 31, 2021

Real Life Example of Molecular Engineering

As it is an emerging field with seemingly unlimited potential, the field of molecular engineering has stirred some controversy regarding its implications ethically, environmentally and socially. At the same time, the science promises to exert its influence in all spheres of human life around the world. In the medical devices industry, a recent case study of Ortho Molecular illuminated the powerful potential of this form of engineering. The firm employs a ProScan metal detection system, rooted in molecular engineering, which was developed by Advanced Detection Systems (ADS). This ensures the quality of all of the products in its manufacturing system. The device memorizes the product sensory impulse, and then recalls it as it travels through the scanner, thereby ensuring the finished product meets all Food and Drug Administration health and safety codes. The ProScan application evaluates the entire device to identify the presence of any metal. If it is detected, a signal occurs compelling a check of the entire batch of deliverables. The system enables quality control staff to quickly identify integrity breaches and remedy them seamlessly. Molecular engineering was critical in developing this acute detection system application. Ortho Molecular purchased several of the ADS systems for its medical device product manufacturing processes because of its sensitivity and efficiency.

Read More: computer science engineering vs information technology

Friday, January 29, 2021

Mining and Geological Engineering Career Outlook


Mining and Geological Engineering 

Mining and geological engineering focuses primarily on the study and design of creating safe and effective means to extract metals and minerals for industrial, commercial and scientific purposes. Requiring education and understanding not only of mining principles and practices, engineers in this field are also expected to have an advanced and dynamic understanding of geological sciences, such as soil and mineral composition, surveying, prospecting and exploratory geological research. In addition to extracting the more conventional materials such as oil, precious and industrial metals and rarer gems and materials, many new advancements in information technology have expanded the role of geological engineering to search and mine for other materials, such as the dozens of special minerals and materials used in computer, tablet and smart phone construction.

At EducatingEngineers, we want you to understand the complexities of engineering careers and what it takes to succeed in your education. Please read the information below to learn more. And contact the schools in our directory to get started!

Employed by governments, major corporations, non-profit organizations and scientific/academic research institutions, geological engineers play pivotal roles in everything from industrial production of materials and energy, to advancing scientific understanding of the material composition of the Earth. Because of the numerous and varied functions for geological engineering and the substantial technological advancements made in the field itself, the role of the engineer in respect to mining and geological research continues to evolve, finding new and interesting applications for the science with each passing year.

Read More: cse vs ce

Thursday, January 28, 2021

Careers for Mechatronic Engineers

Companies like Harris & Bruno have formed partnerships with schools like Sierra College in California to seamlessly integrate students from the classroom to applying their knowledge to real world mechatronics applications. Markus Fredrickson, a Sierra College student, works part-time in manufacturing at Harris & Bruno. When he first began his education, he did not have a clear direction for his career. However, the collaborative approach of his university and the private enterprise has provided him with direction and the practical outlet for his skills. He described his work with the firm as a seamless experience bridging his classroom education with real world scenarios. Many of the parts and systems he encountered in his classroom work echoed the very same components and problems he was asked to solve on the job. Ultimately, he found his theoretical and practical education as invaluable in facilitating his career advancement. These types of programs reflect the potential for students and companies as they integrate their resources and expertise in growing the industry. This boasts well for both current and prospective professionals in the field and the industry as a whole as more evolutions occur in terms of technology and human resources.
If you would like to learn more about mechatronics or other areas of engineering, contact the schools in our directory to receive more helpful information. We recommend contacting multiple schools to be sure you choose the best one for you!

Read More: what is the difference between cs and it engineering

Wednesday, January 27, 2021

Mechanical Engineering Degree

Mechanical engineering is the broadest of the engineering disciplines. This field focuses on two major topics: thermal systems and mechanical systems.

As a result, the mechanical engineering curriculum overlaps many other engineering fields, including aerospace, biomedical, chemical, civil, electrical, industrial, materials and metallurgical and petroleum.

Any prospective engineering student should have a strong high school background in elementary, intermediate and advanced algebra, trigonometry, geometry, pre-calculus, chemistry and physics.

Additionally, the pre-engineering student should have solid reading comprehension skills and the ability to write logically, clearly, concisely and with correct grammar.

Read More: fiber optic jobs near me

Tuesday, January 26, 2021

Real-Life Stories of Materials Science Engineering

Beyond these statistical realities and potential, however, many within the fields of Materials Science and Engineering express substantial personal and professional satisfaction with their work and career. Bringing together the applicable skills of dynamic critical thinking and problem solving with those of analytical research and scientific endeavor, the challenges posed to the working professional often result in an enhanced satisfaction with successful end results in respect to projects and ventures undertaken. In seeing the final real-world applications to their research, development and testing of new and existing materials, Material Engineers often find themselves on the cutting edge of scientific discovery and advancement.

Taking for example, the case of NASA engineer Clara Wright, the pliable skills learned while studying Material Science and Engineering have given Ms. Wright substantial personal fulfillment, in addition to her remarkable career. Being possessed since her youth with an interest in puzzles and problem solving, Wright gravitated naturally towards the field of material science and engineering. Upon completing her degree, Wright first entered the field of biomedical research, assisting with the design and development of prosthetic limbs for amputees. Later, Wright took a position at NASA working as a materials engineer, studying materials in use by the space program. In July of 2014, Wright was profiled for NASA’s website, in an effort to highlight both her contributions to the space program, while also the interest and dedication to Material Science and Engineering which brought her to work there.

Read More: fiber optic cable companies in usa

Thursday, January 21, 2021

Industrial Engineering

Industrial engineering is actually a far-ranging profession that focuses on optimizing complex processes or systems by reducing wastefulness in production. It focuses on systems of people, money, knowledge, information, equipment, energy, and materials and may address mathematical, physical and social science concerns. It brings to bear the principles and techniques of engineering design on many facets of life and seeks to specify, predict, and evaluate the results derived from these systems or processes.

Industrial engineering is one of the oldest branches of engineering taught in engineering schools, and generally requires that practitioners hold a professional engineering license in order to practice. If you want to learn more about this field, and how to pursue a career in this direction, contact the schools in our directory to receive detailed information you can use to make a decision.

The entry-level qualification needed to work as an industrial engineer is typically a bachelor’s degree in industrial engineering. It is not uncommon, however, for practicing industrial engineers to have degrees in related fields such as mechanical engineering, manufacturing engineering, industrial engineering technology, or general engineering. Many universities that offer degrees in the field offer advanced degrees: master’s and doctoral level program, as well. US News and World Report ranks industrial engineering programs in the United States. In 2012, the top ranked US program was at the Georgia Institute of Technology. As of 2012, it had held this ranking for twenty-two consecutive years. The program at the University of Michigan, Ann Arbor, and University of California, Berkeley, have been ranked second and third in the United States for many years.

Read More: fiber optic jobs near me

Wednesday, January 20, 2021

Jobs Specific to Environmental Engineering

Because technology is always changing, job titles and work settings change, so the niche you set your cap for may be listed under new and expanded headings by the time you have your B.S. Positions for environmental engineers are widespread throughout industry, government, research organizations, management, and consulting. The need exists worldwide for environmental engineers to find solutions to our human needs.

Environmental engineers can choose career opportunities from designing waste treatment facilities and developing management strategies, to creating predictive models of human impacts on the environment and conducting research. They can work with carbon management, structural safety, water and air quality, transportation infrastructure, and sustainability. The list is far too long for this overview.

Environmental engineering degrees can lead to jobs in the power industry, with architectural and engineering firms, engineering consulting firms, and city, state and federal government.

Read More: fiber optic jobs

Tuesday, January 19, 2021

What is an Electrical Engineer?

Electrical engineers study electronics, electromagnetism, and the application of electricity. The products they develop are used in medical technology, game systems, cell phones, robotics, cars, green technologies, and navigation systems, just touching lightly on the list.

Nearly everything that defines modern civilization is linked to electrical engineering. These engineers work in labs, offices, and industries. They develop systems for power generation, transmission, and distribution—have you heard about "the grid?"

In addition to the subjects mentioned above (and still touching only briefly on the scope), this expertise covers power switches (solar, wind, geothermal), design of power systems, and architectural planning. Electrical engineering is behind the development of every electronic thing within your grasp.

Electrical engineers focus on computer systems design, components, and processes. They incorporate research or management using specialized, hands-on knowledge and dealing with public, private, and academic sectors. They are dedicated to continuing education, on-the-job learning, leadership, and applying new techniques to new situations.

The sciences of physics and mathematics are fundamental to this profession, but technical focus accounts for only a fraction of this work. Making proposals to clients, preparing budgets, and calculating project schedules consumes much of these engineers' time. Senior-level engineers often manage a team, so project management skills and strong communication skills are vital.

Read More: fiber optic cable near me

Monday, January 18, 2021

Computer Engineering Career Advancement


Career Advancement

Just like their educational background, the job market for Computer Engineers is very broad. Rewarding careers are found in many areas. Robotic manufacturing, security equipment, medical diagnostic devices and personal electronics virtually all have some sort of computer in them.

The breadth of this industry means there are many opportunities to expand your skills as well as move up in responsibility and compensation.


According to the U.S. Bureau of Labor Statistics, Computer Hardware Engineers make a median annual salary of $98,610. Jobs in Computer Engineering are, like many other high-paying careers, most available in the Northeast and Southwest. Jobs in Computer Engineering are expected increase by 9% annually. The job market is expanding, and average salaries in the field are respectable.

Studying Computer Engineering can lead to a very rewarding career at the cutting edge of technology. Since virtually every modern device you own has some form of microprocessor in it, there is a growing need for Computer Engineers to design and integrate them. The job market is expanding, and average salaries in the field are respectable.

If you love math and science and want to be a part of the growing technology world, look into one of the many available Computer Engineering college degrees and get started in a rewarding career.

Read More: computer hardware engineer jobs

Sunday, January 17, 2021

Degrees in Civil Engineering

Universities specializing in engineering fields offer master of science, master of engineering, and doctor of philosophy degrees in civil engineering as well as other branches of engineering technology.

A well-rounded civil engineering program prepares students for careers in civil engineering or for advanced study in the field.

Schools of engineering can vary, but as a rule their requirements are similar. Universities of engineering typically offer the CEE (civil and environmental engineering) degree, and a B.S. in environmental engineering (BS EnvE). The curriculum gives students the fundamentals to address emerging issues regarding air and land resources, human health, water, and environmental restoration.

During the first 2 years, studies include English composition, physics, chemistry, biology, mathematics, and introductory engineering. Advanced engineering courses in the third year including solid and fluid mechanics, thermodynamics, and laboratories in engineering materials, hydraulic engineering, and environmental monitoring and process engineering.

Student electives are the central focus of fourth-year studies. All prerequisites must be met before receiving a B.S. Acceptable letter grades in math, physics, chemistry, and COE are required for the B.S. EnvE degree.

Read More: data recovery specialist near me

Wednesday, January 13, 2021

Masters of Chemical Engineering

 Aside from the standard 4-year-degree courses, there are degrees with emphasis on environmental, biochemical, or materials engineering. Environmental studies prepare engineers to work on waste minimization, pollution control, and waste management. Biochemical studies prepare students to enter the biochemical industry, and support a strong pre-med program.

Materials engineering incorporates chemistry and applied physics, with interest in the atomic and molecular levels of materials. Emphasizing these areas requires a slightly heavier course load. On graduating, students are traditional chemical engineers as well as specialists.

Beyond receiving a B.S. in chemical engineering, students can pursue other graduate degrees. The master's degree (M.Sc.) for chemical engineering is the next level, and generally requires 5 quarters of study. Typically, a university will allow no more than 3 years for the completion of this degree, and a grade point average of 3.00 is required.

Doctor of philosophy (PhD) studies prepare graduates to take active parts in the ever-changing field of chemical engineering. A PhD can access all levels of industrial and research organizations such as national laboratories or university teaching.

Read More: hardware engineer

Tuesday, January 12, 2021

Masters of Biomedical Engineering

Master's degrees in biomedical engineering are encouraged, and generally require five more quarters of study, but options are becoming available. Colorado State University (CSU) and Duke University, for example, offer cutting-edge approaches to dual-degree coursework.

CSU's dual-degree biomedical engineering bachelor's program coursework focuses on improving health, fighting disease, and aiding those with disabilities. The master's strengthens experience in the sciences, and animal and human medicine. Earning two degrees in 5 years is an excellent beginning to a successful career as a biomedical engineer.

Duke's BME combines hands-on experience with interdisciplinary research in the detection and treatment of human disease. Many undergraduates are involved in independent-study research.
After earning their 4-year B.S., most students earn a master's in less than 2 years and a Ph.D. in less than six.

Georgia Tech's Master of Biomedical Innovation and Development (BioID) is another example of collaborative instruction between biomedical technology and hands-on experience.
This degree addresses a gap in current education—the “bench-to-bedside” progression that takes products from research to patients.

Read More: data recovery specialists

Monday, January 11, 2021

Automotive Engineering Degrees

Bachelor’s Degree

Because not many schools offer a bachelor’s degree program in automotive engineering, most aspiring automotive students enter a mechanical engineering program. This is because automotive engineering is an offshoot of mechanical engineering and therefore, many of the classes are the same. However, some schools offer mechanical engineering programs that include automotive engineering courses such as:

  • Automobile dynamics
  • Automotive electronics
  • Engine parts
  • Diesel engine theory
  • Alternative energy sources
  • Fuel cell systems
  • Powertrain dynamics

It usually takes four years to complete a bachelor's degree in engineering. During the last year, the student must finish a design project, either alone or with other students. After graduation, the new engineer must work under the supervision of a licensed professional engineer for a certain number of years, depending on the state, and pass and Engineer-In-Training exam and Professional Engineers exam to become a licensed professional engineer.

Read More: data recovery specialist near me

Friday, January 8, 2021

Masters Degree in Audio Engineerin

Master's programs are available to those that desire to extend their education in very specific areas of the industry. These programs provide an intense study of a particular area of interest, like game design, music, acoustics, or recording.

Audio engineering degrees require a blend of music, business, and technical classes. Music fundamentals, acoustics, and theory are some of the music classes that are included in the degree. The technical and business courses encompass recording production, audio signal processing, mixing, editing, digital sound design, live sound production, and studio operations.

Audio engineering is a very hands-on profession because it involves the use of a variety of equipment and software. Due to the invaluable experience of actually using the equipment, online degrees are not feasible for the most part. The only exceptions are a few online Master's programs with a focus on acoustics, which does not intricately involve equipment.

The length of the program varies with different degrees. An Associate of Science requires approximately two years of study. Most Bachelor of Science programs take four years to complete. The Master's degree will add at least two years following the Bachelor's program for a total of six years.

Read More: computer hardware job description

Thursday, January 7, 2021

Job Functions of Applied Engineers


Applied Engineering

Applied engineers work on the application, design and technical components in the development of new products. They integrate systems, thereby enhancing the manufacturing and utilization of an application as well as oversee the development teams within a company. Specific fields of applied engineering including six sigma, learn enterprises, quality control, nanotechnology, manufacturing systems and supply chain logistics and systems, as well as motorsport technology applications. These professionals employ a deliberate approach to solving a medley of problems regarding processes and flow systems, underscoring their highly refined technical, interpersonal and communication skills. Applied engineers have been instrumental in the development of aircraft, automobiles, and smartphones, among other products. If you are interested in becoming an applied engineer, contact the schools below this information to request information about programs near you!

These professionals demonstrate a proclivity to blend technical expertise with real world applications. In industrial settings such as robotics, aviation, computer drafting, electronics, graphic communications, construction and nanofabrication, applied engineers exhibit a range of skills, as they daily execute a bevy of tasks and duties to realize the fruition of a project. They employ statistics in control charts and tables to monitor system integrity; examine and/or establish quality control systems in a facility; execute production timelines; refine inventory systems; utilize production innovation in enhancing management; maintain standards in accordance with federal and municipal codes in maintaining safety and health standards; develop solutions to industrial organization problems; apply marketing and business acumen in the product lifecycle, and more Top firms looking to hire applied engineers include Northrop Grumman, Ford Motor Company and Motorola, Inc.

Read More: it hardware jobs

Wednesday, January 6, 2021

Jobs and Salary for Agricultural Engineering

Food will always be a growing commodity (no pun intended). Jobs for these engineers are found on farms, in manufacturing plants, equipment design, food production, animal production facilities, laboratories, construction, government systems that protect soil and water, and in biofuels engineering—worldwide (for the traveler in you) and just for starters.

These engineers are part of the leadership that help conserve, maintain, and improve our natural resources and environment. These employees will provide engineering assistance to his or her team, field office personnel, and landowners with planning, developing, and constructing on-farm conservation practices and irrigation projects statewide.

The US Bureau of Labor Statistics from 2011 show 2,650 employed agricultural engineers, employment rising by 6.5%, the lowest annual wages at $44,180 and the highest at $118,330. The median pay in this group is $74,630 per year.

The most visible association for agricultural engineers in the U.S. is the American Society of Agricultural and Biological Engineers (ASABE). Based in St. Joseph, Michigan, this international professional society is devoted to agricultural and biological engineering. The organization has about 9,000 members in more than 100 countries. ASABE provides opportunities to share research findings through conferences, journals, and a magazine. It has developed professional standards of practice and given members opportunities to network.

In 2005, the name was modified to better reflect the profession. The increase in biological engineering has greatly affected today's global agriculture systems. For example, genetically modified organisms have introduced massive changes in food production, logistics and trade.

Read More: computer hardware jobs

Tuesday, January 5, 2021

Aerospace Engineering Degree

Aerospace engineers research, analyze, design, synthesize, develop and test aircraft, spacecraft and weapons. Aerospace engineers who focus on aircraft are called aeronautical engineers; those who concentrate on spacecraft are called astronautical engineers.

They are essentially concerned with the aerodynamic properties of flight vehicles, such as airfoil, control surfaces, lift and drag.

Aerospace engineer can specialize in areas such as structural design, propulsion, navigation, guidance and control systems, communications or defense systems.

They may also specialize in a particular type of equipment, including commercial and military planes and jets, helicopters, space shuttles, satellites, space vehicles, missiles or or combat aerial vehicles.

Aerospace engineers can develop a special expertise in aerodynamics, thermodynamics, celestial mechanics, propulsion, acoustics, avionics or guidance and control systems.

Read More: hardware related jobs

Monday, January 4, 2021

Acoustic Engineering Success Story

The Bose company is a prime example of a firm that relies heavily on the expertise of sound engineers. Founded by Amar G. Bose, an engineer himself, who studied at the Massachusetts Institute of Technology (MIT), the firm built its reputation on developing and marketing audio equipment and systems of impeccable quality. The company’s products are popular among consumers, automobile manufactures and performing arts venues. The equipment developed by their sound engineers strives to simulate the quality experienced at a live concert hall. Bose has chosen to engage in long-term, higher-risk projects requiring immense research and development instead of providing cheaper products to its customers. This approach has paid off with the creation of noise-canceling audio equipment such as headphones as well as ingenious suspension systems for the automobile industry.

As a teacher at MIT for nearly 50 years, Bose instructed a course on acoustics that transcended mere technical matters into larger life lessons. Bose stressed to his students the importance of personal responsibility and having high standards for work and integrity. Many students attributed to Dr. Bose their resolve to take on more risky endeavors as well as the technical and critical-thinking skills to achieve success in their careers. The life of Bose and the success of his company serves as a model for all practitioners in the field, underscoring the importance of developing a well-rounded education and approach to successfully tackling both technical and more abstract challenges that they may encounter both in their personal and professional arenas.

Read More: is computer hardware engineer a good career

Software Engineering Career Outlook

Most people are familiar with older, more traditional engineering fields such as mechanical, civil, or electrical. Software Engineering is a...