Tuesday, February 2, 2021

Discover the World of Nanoengineering

 

Nanoengineering encompasses the practice of the profession on a nanoscale, which stems from the nanometer unit of measure, equivalent to one billionth of a meter. Within the industry, nanoengineering is synonymous with practices of nanotechnology, whereby it focuses on the engineering component of a given technology rather than the scientific side. Nanotechnology professionals have become prized professionals in the current marketplace for their skills and training dealing with microscopic applications.

From the automobile and energy industry to healthcare and technology firms, companies around the world eagerly seek to attract and develop these professionals. Within these realms, scanning tunneling microscopy (STM) and atomic force microscopy (AFM) are the dominant techniques of the field used to solve problems and originate new technologies. Both techniques pivot on generating microscopic probes to manipulate and track the movement of atoms with the idea of capturing something significant to translate into real world applications such as revolutionary manufacturing materials or new pharmaceutical products.

To learn more about becoming a nanoengineer, contact the schools below to request more information. We recommend contacting multiple schools to compare programs.

Professionals in this field often perform a medley of duties depending on the industry they work in and/or their educational backgrounds. In biosciences, nanoengineers dedicate their time to developing new medical device products and ways to enhance existing ones. From a construction viewpoint, these experts investigate and evaluate the development of new materials to develop more sustainable and durable building products and materials. Automotive companies employ these engineers to develop more efficient processes within an engine system and materials to build and pad vehicle systems and interiors. Regardless of the field, these engineers choose to employ their skills and talents, the field requires immense patience and attention to detail. Refining the effective use of STMs and AFMs, critical to the development of new technologies and breakthroughs, often proves to be challenging for most practitioners in the field. Powerful microscopes with exceptionally fine silicon tips are employed to monitor the nano activity harnessed to develop new applications. Establishing a suitable tip, though, can sometimes take seven days alone. Nevertheless, global firms like Abbott Laboratories, Tesla, Exxon-Mobil, and Sony are a few of the global firms capitalizing on the potential of nanotechnology.

Read More: problems with job descriptions

No comments:

Post a Comment

Software Engineering Career Outlook

Most people are familiar with older, more traditional engineering fields such as mechanical, civil, or electrical. Software Engineering is a...